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Value of Dimensional Reduction

Dimensionality reduction reduces data to its dimensions of highest

It can allow datasets with thousands of variables
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Singular Value Decomposition

Factorization of matrix into three components

Generalizes diagonalization to non-square and singular matrices
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SVD Visualized

Figure 1: SVD Visualized
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SVD Example

A =

[
3 2 2
2 3 −2

]
(1)

Start by finding eigenvalues of AAT

AAT =

[
3 2 2
2 3 −2

]
∗

3 2
2 3
2 −2

 =

[
17 8
8 17

]
(2)
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SVD Example: Characteristic Equation

AAT − λI = 0 (3)

λ2 − 34λ+ 225 = 0 (4)

(λ− 25)(λ− 9) = 0 (5)

σ1 =
√
25, σ2 =

√
9

3, 5, and 0 are our singular values σi
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Finding V

Find unit-length vector in kernel of matrix ATA− σ2
i I

ATA− 25I =

−12 12 2
12 −12 −2
2 −2 −17

 (6)

This row reduces to:

1 −1 0
0 0 1
0 0 0

 (7)

The unit-length vector in the kernel is:

v1 =


1√
2
1√
2

0

 (8)
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Finding V

Find unit-length vector in kernel of matrix ATA− σ2
i I

ATA− 9I =

 4 12 2
12 4 −2
2 −2 −1

 (9)

This row reduces to: 1 0 −1
4

0 1 1
4

0 0 0

 (10)

The unit-length vector in the kernel is:

v2 =


1√
18

−1√
18
4√
18

 (11)
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Finding V

Final vector can be found by computing the kernel of ATA or by
finding a unit-length vector perpendicular to v1 and with transpose
perpendicular to V2

v3 =


2√
3

−2√
3
1√
3

 (12)
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Finding U

A = UΣV T = U

[
5 0 0
0 3 0

]
∗


1√
2

1√
2

0
1√
18

−1√
18

4√
18

2
3

−2
3

−1
2

 (13)

σui = Avi or ui =
1
σAvi

A = UΣV T =

[
1√
2

1√
2

1√
2

1√
2

]
∗
[
5 0 0
0 3 0

]
∗

[
1√
2

1√
2

0
1√
18

3 0

]
(14)
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Principal Component Analysis Overview

PCA is the most commonly used dimensionality reduction technique

PCA is used to reduce the data to a combination of variables
representing maximum variance
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PCA Steps

1 Standardize Data

2 Compute Covariance Matrix

3 SVD or eigendecomposition

4 Select top Eigenvectors
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Standardize Data

CenteredData =
OriginalData− colMean

ColstandardDeviation
(15)
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Compute Covariance Matrix
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Select top Eigenvectors of covariance matrix

Perform Eigenvector decomposition

Order eigenvectors by eigenvalues

Highest eigenvalues correspond to eigenvectors of “principal
components” explaining most variance

If not a square matrix, do SVD
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PCA Example
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PCA Regression

PCA regression often used to avoid multicolinearity problem in
regression

PCA is also useful in situations with high-dimensional covariates

If using to forecast, make sure to reconvert to standard coordinates
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PCA Visualization
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LDA

PCA is unsupervised while LDA is supervised

PCA attempts to find principal components that maximize variation
while LDA finds variables that maximize separability between groups

LDA common in topic modelling
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LDA Visualized

Figure 2: LDA Visualization
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Bias-variance Tradeoff

MSE = bias2 + variance + baselineError2 (16)

Figure 3: Bias-Variance Tradeoff
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Bullseye Picture

Figure 4: Precision vs. Accuracy
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Overfitting vs. Underfitting

Figure 5: Overfitting vs. Underfitting
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Splitting Data

Data can be split into two or three datasets: training, testing, and
cross-validation

Data are split to make sure models fit out-of-sample data correctly

Cross-validation dataset is used for parameter
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Cross-validation

How did you tune k?

Cross-validation!

Cross-validation allows you to choose model parameters by testing the
model on data other than the test set with a range of different
parameters

Can use separate dataset or split training set
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K-Fold Cross-validation

Divide the dataset into k folds
Train with parameter on k-1 data
Test for parameter on last data
Repeat and take average error
Use parameter with minimal error

Figure 6: K-fold Cross validation
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Leave-one-out Cross-validation

Leave one out is a special form of K-fold cross validation in which one
observation is used as the cross-validation set over all observations,
and the average error is cross-validation error

LOOCV is computationally expensive but good with few observations

Figure 7: Leave-one-out Cross-validation
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Stratified K-Fold CV

Used most commonly for classification tasks
Attempts to use stratified random sampling to match the proportions
of observations in the training data
Used to prevent bad batches of folds from messing up training error

Figure 8: Stratified K-fold Cross-validation
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Thank You So Much!
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